Left Ventricular Outflow Tract Velocity Time Integral – Fluid Responsiveness

Rahul Kathard, Nicholas Errico

Outline

- Definition
- Literature Review
- Experimental Design
- Results
- Conclusions

Introduction

- Stroke Volume (SV) and Cardiac Output (CO) are crucial for hemodynamic monitoring but are difficult to estimate by clinical assessment alone.
- Pulmonary artery catheter is considered gold standard but has a high risk/benefit ratio.
- Transthoracic echocardiography (TTE) is non-invasive (also when compared to transesophageal echo), repeatable, and has low costs for assessing SV.
- Using TTE, measurement of the flow across aortic outflow tract in the left ventricle can estimate SV and CO.

Physics!

- Velocity Time Integral (VTI)
 - Measure of "length" of a hypothetical column of blood which passes via Doppler ultrasonography
- VTI length, LV outflow tract (OT) – area
- LVOT area = π r^2
- LV-OT x VTI = SV
- SV x HR = CO

Additional Sources of CO

- Assuming normal flow throughout the heart without valvular flow abnormalities or shunting, flow across various valves can be used to calculate CO.
- VTI x Outflow tract area =SV, SV x HR = CO

Math Minimization

- Given that the area calculation for outflow tract area is a circle, A = πr^2 , any variation in r will drastically alter results.
- Luckily, the outflow area generally can be considered constant and can be measured once to estimate CO without repeat measurements.
- Without significant variation in HR, the VTI alone can be used as a surrogate for CO.
- VTI alone is known as the minute distance and can be used to track CO.

Fluid Responsiveness

- Fluid responsiveness has been defined as an increase in SV of 15% or more with a fluid challenge
- LVOT-VTI has been examined in the context of fluid responsiveness and shown to be a reliable indicator of this increase in SV
- This fluid responsiveness can be measured by passive leg raise

or Trendelenburg positioning

• For passive leg raise as a test of fluid responsiveness, a target of 12% increase in SV can be used as a cutoff point with a sensitivity of 87.5% and a specificity of 95%.

Test of Concept Experimental Design

- 2 subjects, 2-3 samples
- Each sample with 4 scans of LVOT-VTI, hydrated and dehydrated
 - Measurement of mitral view or 5 chamber view LVOT-VTI, HR
 - Scan while subject seated and head elevated at 30 ° (Low Fowler's)
 - Scan during passive leg raise, with legs elevated to 30°, head flat
- Samples compared for increase of at least 12% for fluid responsiveness
- Hypothesis: Subjects will have increased fluid responsiveness while dehydrated
- Dehydration was achieved through vigorous outdoor exercise for at least 30 minutes without intake of water

Obtaining the View

- 5 Chamber View: Obtain the Apical 4-chamber view and fan anteriorly.
- Place the VTI window over the LVOT with the Doppler indicator inferior to the aortic valve.

5 Chamber View

5 Chamber View Video

Findings – Hydrated Example

Low Fowler's

LIVOT Diam cm + LIVOT Vmax 0.86 m/s + CO Flux 1.16 l/mincm2

Passive Leg Raise

VTI 15.4 cm VTI 20.5 cm

Findings - Dehydrated Example

Low Fowler's

UNC 08/20/2022 02:41:52 PM *** None ** None *** None

Passive Leg Raise

VTI 12.4 cm VTI 18.9 cm

Auto-Derivation of VTI

Day 1	Low Fowler's	Passive Leg Raise	Delta
Hydrated	17.7	22.5	4.8 (27%)
Dehydrated	14.4	19.3	4.9 (34%)
Day 2			
Hydrated	15.4	20.5	5.1 (33%)
Dehydrated	12.4	18.9	6.5 (52%)
AVERAGE			
Hydrated	16.6	21.5	4.9 (30%)
Dehydrated	13.4	19.1	5.7 (43%)

Manual Derivation of VTI

- To derive the VTI manually, the waveforms must be individually traced on the US interface for calculation of the underlying area.
- With the probe in the appropriate position, this tracing outputs an individual VTI as compared to the automatic average VTI via device alone.
- Once the waveforms are outlined, the area under the figure is calculated to give the VTI.
- As seen here, the manual method is susceptible to variation based on user tracings of the waveform.

Manual VTI Data

	Low Fowler's	Passive Leg Raise	Delta
Trial 1, Hydrated	17.5	18.9	1.4 (8%)
Trial 1, Dehydrated	16.6	19.7	3.1 (19%)
Trial 2, Hydrated	19.8	22.5	2.7 (14%)
Trial 2, Dehydrated	19.6	19.8	0.2 (1%)
Trial 3, Hydrated	17.4	17.3	0.1 (0.5%)
Trial 3, Dehydrated	17.7	18.9	1.2 (7%)
Average Hydrated	18.2	19.6	1.4 (8%)
Average Dehydrated	18.0	19.5	1.5 (8%)

Reference Values

- 50th percentile LVOT-VTI values for 24-year-old males was found to be 20.5, with a range from 13.9-29.7 from 1st to 99th percentiles.
- Experimental findings of average VTIs (hydrated) of 18.2 (~25th percentile) and 16.6 (10th percentile) were within the normal distribution of LVOT-VTI for 24-year-old males.

Conclusions

- Transthoracic echocardiogram is a reliable method of obtaining LVOT-VTI.
- LVOT-VTI is a reliable surrogate measure of cardiac output.
- LVOT-VTI is a reliable measure of fluid responsiveness.
- Auto-derivation of VTI is generally a more precise and accurate manner of measuring fluid responsiveness.
- Limitations to LVOT-VTI use in practice mainly stem from user proficiency in bedside ultrasound.
- Next steps would include comparison of IVC collapsibility to LVOT-VTI as a measure of fluid responsiveness.

References

- Admin. "2.3.2 Apical Window." 123 Sonography, 123Sonography, 21 June 2022, https://123sonography.com/ebook/apical-window.
- Blanco, P. Rationale for using the velocity–time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. *Ultrasound J* 12, 21 (2020). https://doi.org/10.1186/s13089-020-00170-x
- Blanco P, Aguiar FM, Blaivas M. Rapid Ultrasound in Shock (RUSH) Velocity-Time Integral: A Proposal to Expand the RUSH Protocol. J Ultrasound Med. 2015 Sep;34(9):1691-700. doi: 10.7863/ultra.15.14.08059. Epub 2015 Aug 17. PMID: 26283755.
- Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med. 2007 Jul;33(7):1133-1138. doi: 10.1007/s00134-007-0642-y. Epub 2007 May 17. PMID: 17508202.
- Wang, Jinzhong et al. "Effect of VTILVOT variation rate on the assessment of fluid responsiveness in septic shock patients." *Medicine* vol. 99,47 (2020): e22702. doi:10.1097/MD.000000000022702
- Díaz A, Zócalo Y, Cabrera-Fischer E, Bia D. Reference intervals and percentile curve for left ventricular outflow tract (LVOT), velocity time integral (VTI), and LVOT-VTI-derived hemodynamic parameters in healthy children and adolescents: Analysis of echocardiographic methods association and agreement. Echocardiography. 2018 Dec;35(12):2014-2034. doi: 10.1111/echo.14176. Epub 2018 Oct 30. PMID: 30376592.

