Restricting Daily Chest Radiography in the Intensive Care Unit: Implementing Evidence-Based Medicine to Decrease Utilization

Jinell Scott, MD, MBAa, Stephen Waite, MDb,c, Alexandra Napolitano, MD, MSd

Credits awarded for this enduring activity are designated “SA-CME” by the American Board of Radiology (ABR) and qualify toward fulfilling requirements for Maintenance of Certification (MOC) Part II: Lifelong Learning and Self-assessment. To access the SA-CME activity visit https://cortex.acr.org/Presenters/CaseScript/CaseView?Info=yjfiDipbcANPw4V%2bKd4mEliaA74C7%2fqEsgj6dju1XLZA%253d. SA-CME credit for this article expires February 29, 2024.

Stacie Stallings, MS4
6/1/2021
Learning objectives

By the end of this journal club, participants will be able to...

1. Predict the cost of a chest radiograph in the Intensive Care Unit (ICU)

2. Understand the importance of obtaining “buy-in” with a multidisciplinary team

3. Determine what interventions require a portable chest radiography in the ICU

4. Determine ICU patient benefits from decreased chest radiography
Module outline

I. Case
II. Background
III. Article Overview
IV. Clinical Questions
V. Key Points
Case presentation

30yoF G3P2 at 24wks with PMH of asthma presents to the ED with cough and shortness of breath over the past two months. She states she has noticed that it’s harder to take in deep breaths, she easily becomes fatigued with little activity, and she has sputum with coughing. She assumed her symptoms were due to her advancing pregnancy until she noticed blood in her sputum recently. She states that she has tried to use an albuterol inhaler, but she was unable to achieve relief. She has no recent illness, no COVID-19 exposures, no sick contacts, and no other alarming symptoms. Her pregnancy has been uneventful, she has no relevant family history, and she does not use tobacco or vaping products.

Physical Exam: She appears comfortable and breathing well. Sinus Tachycardia to the 120s, BP 120/70, RR 18, SpO2 100%, Temp 37.1. Heart is tachycardic, but regular rhythm. Lungs are CTAB, no wheezes, no rhonchi.

Notable Labs & Studies: WBC 20.1, ECG shows sinus tachycardia, new right axis deviation, and T waves present in inferior and lateral leads

Shared decision making led to obtaining a CTA Chest with contrast due to her presentation with tachycardia, dyspnea, hemoptysis, and an abnormal ECG which established a high pretest probability of a pulmonary embolism. The benefits of the study outweighed the risks to the patient and her unborn child.
Case imaging

CTA Chest Pulmonary Embolism Protocol:

No evidence pulmonary embolism.

Lateral RML showed an opacified serpiginous pulmonary artery distally with a vascular nidus measuring 8 x 7 x 7mm with dilated feeding pulmonary artery and draining pulmonary vein, consistent with pulmonary arteriovenous malformation (AVM).
Case progression

• Pt admitted to MFM antepartum service and Interventional Radiology performed pulmonary angiogram and embolization with plugs and coils.

• OB, pulmonary, cardiology, and hematology teams were consulted. A TTE and right heart catheterization were performed and showed severe pulmonary hypertension with pulmonary artery systolic pressure ~75mmHg. The patient was moved to CICU for monitoring and treatment for pulmonary hypertension pending delivery. As gestation progressed, a multidisciplinary plan was established to induce labor in the CICU and to perform an assisted delivery in the operating room with cardiac surgery team standing by for possible ECMO cannulation intervention if the patient decompensated.

• At 34wks gestation, the patient was induced and delivered in the operating room. After delivery of the placenta, the patient experienced refractory hypotension and a PEA arrest which required emergent ECMO cannulation. The patient was transferred to the CTICU.

• Hospital course: POD 1 bedside chest washout, POD 2 attempted chest closure and L pleural chest tube placement, POD 4 R VA cannula replaced, CT Abd Pelvis showed free fluid mixed with hemoperitoneum and AVM in her uterus.

• Plan: POD 9 Protek Duo (RVAD) placement and attempt chest closure. Consideration for lung transplant expedited.
Case imaging

Total number of radiograph images (XR and CT) throughout 70 days since admission: 28

Total number of CT scans: 3

Total number of abd XR: 4

Total number of pCXR: 21

Locations:

Prior to CTICU: 4

OR suite: 2

CTICU: 15 (within 9 days ICU admit)
<table>
<thead>
<tr>
<th>DAY</th>
<th>Type of Imaging</th>
<th>Noted Indications</th>
<th>Impression/Remarkable Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission</td>
<td>CT Chest</td>
<td>Diagnostic (R/O PE)</td>
<td>2.5cm lobulated soft tissue density structure over RML zone; no pneumothorax</td>
</tr>
<tr>
<td>Admission</td>
<td>CXR</td>
<td>Diagnostic (R/O PE)</td>
<td>Pulmonary AVM</td>
</tr>
<tr>
<td>Day 5</td>
<td>CXR</td>
<td>Post IR embolization</td>
<td></td>
</tr>
<tr>
<td>Day 43</td>
<td>CXR</td>
<td>CVC R Li line check</td>
<td>Appropriate placement</td>
</tr>
<tr>
<td>Day 60</td>
<td>CXR</td>
<td>CVC L Li line check</td>
<td>Appropriate placement</td>
</tr>
<tr>
<td>Perioperative</td>
<td>CXR</td>
<td>OR Incorrect surgical count protocol</td>
<td>No radiopaque opaque foreign object</td>
</tr>
<tr>
<td>Post-op ICU</td>
<td>CXR</td>
<td>ICU Admission</td>
<td>Enteric tube placement (recommend advancement), new patchy right basilar opacities</td>
</tr>
<tr>
<td></td>
<td>Abd. XR</td>
<td>ICU Admission & enteric tube placement</td>
<td>Recommend tube advancement, R chest tubes and mediastinal drains in place, L CVC with tip in mid SVC, ECMO cannula with tip in R atrium, PA catheter with tip coiled at right ventricle, nonobstructive bowel gas pattern.</td>
</tr>
<tr>
<td>POD1</td>
<td>CXR</td>
<td>Increasing airspace opacities in bilateral lower lungs, concerns for infection or aspiration</td>
<td></td>
</tr>
<tr>
<td>POD1</td>
<td>CXR</td>
<td>Swan-Ganz catheter line check</td>
<td>Appropriately positioned</td>
</tr>
<tr>
<td>POD 2</td>
<td>CXR</td>
<td>Same as above regarding Swan-Ganz catheter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CXR</td>
<td>Interval ECMO cannula exchanged, L apical CT placed</td>
<td></td>
</tr>
<tr>
<td>POD3</td>
<td>CXR</td>
<td>Increased airspace opacities in LLL, small L pleural effusion</td>
<td></td>
</tr>
<tr>
<td>Abd. XR</td>
<td>CXR</td>
<td>Abdominal pain</td>
<td>Enteric tube should be advanced 10cm</td>
</tr>
<tr>
<td></td>
<td>CXR</td>
<td>Lungs worrning</td>
<td></td>
</tr>
<tr>
<td>Abd. XR</td>
<td>CXR</td>
<td>Enteric tube advancement check</td>
<td>Appropriately positioned</td>
</tr>
<tr>
<td></td>
<td>CXR</td>
<td>Same as above</td>
<td></td>
</tr>
<tr>
<td>POD4</td>
<td>CXR</td>
<td>Lungs worrning, pleural opacity in L hemithorax</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CXR</td>
<td>OR decortication, L hemithorax w/decreased opacity and L CT and mediastinal drain replacement</td>
<td></td>
</tr>
<tr>
<td>CT Chest</td>
<td></td>
<td>Concerns for RP bleed</td>
<td>Sequela of median sternotomy with multiple tubes and lines, consolidate and ground glass opacities in bilateral lung fields, small bilateral pleural effusions, small pericardial effusion</td>
</tr>
<tr>
<td>CT Abd</td>
<td></td>
<td>Same as above + abd distention</td>
<td>Prominent vascular structures within anterior wall concerning for AVM; moderate free fluid in abd/pelvis with superimposed hemoperitoneum</td>
</tr>
<tr>
<td>POD5</td>
<td>CXR</td>
<td>Moderate located pleural effusion</td>
<td></td>
</tr>
<tr>
<td>POD6</td>
<td>CXR</td>
<td>Left pleural effusion increased in size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CXR</td>
<td>OR Incorrect surgical count protocol</td>
<td>No change</td>
</tr>
<tr>
<td>POD 7</td>
<td>CXR</td>
<td>Similar/slight improved peripheral LUL consolidation, similar appearing consolidation of LLL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CXR</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>POD8</td>
<td>CXR</td>
<td>Slight increase opacities RML and RLL, slight improved aeration to L lung, slight improved/trace L pleural effusion</td>
<td></td>
</tr>
<tr>
<td>POD9</td>
<td>CXR</td>
<td>Stable lung volume, mild pulmonary edema slightly increased</td>
<td></td>
</tr>
</tbody>
</table>
Clinical question

In the Intensive Care Unit patient population, why is there a protocol for daily portable chest radiography and what would be the effects of decreased utilization?
Module outline

I. Case

II. Background

III. **Article Overview**

IV. Clinical Questions

V. Key Points
Daily Portable Chest Radiography (CXR)

- A portable digital X-ray system is moved into a patient’s room, a film plate is placed under the patient and the x-ray beam comes from the anterior to the posterior (AP) approach. Often used when patients are critically ill and unable to stand.

- Average effective dose 0.1 mSv, but can range from 0.05-0.24 according to literature

- The American College of Radiology (ACR) stopped recommending daily CXR in 2008 and changed its stance to “usually not appropriate” in 2011 and 2014 after research showing no impact on preventing adverse outcomes.

- The 2020 revised edition of the ARC Appropriateness Criteria states: The strategy of ordering daily routine chest radiographs for critically ill and mechanically ventilated patients is slowly changing from daily chest radiographs to on-demand radiographs only.

- Estimated cost to perform single chest radiographic examination at the study hospital: $15.87
Module Outline

I. Case

II. Background

III. Article Overview

IV. Clinical Questions

V. Key Points
Article specifics

• **Purpose:** To use evidence-based medicine to decrease the utilization of routine chest radiography in adult intensive care units and used time-driven activity-based costing to demonstrate cost savings.

• **Journal:** Journal of American College of Radiology

• **Study type:** Performance improvement project

• **# cases:** All patients in the MICU and SICU of KCH from Jan – Dec 2019

• **Data:** Considered patient intubation status, location, number of CXRs
 - Timed process map for portable chest radiography (CXR)
 - Time-driven activity-based costing (TDABC)
 - Capacity Cost Rate and Monthly Capacity Cost rate of a Radiology Tech (RT) to establish Cost of Performing Portable CXR
Study cohort

I. All patients within the KCH MICU and SICU were monitored for the number of portable CXRs they received from January to December 2019, with the implementation taking effect in the month of June.
Materials and Methods

• Medical ICU (MICU) and surgical ICU (SICU) units within Kings County Hospital (KCH), an urban, level 1 trauma center in Brooklyn, NYC. KCH is 1 of 11 hospitals in the largest public health system in the country, NYC Health and Hospitals.

• A multidisciplinary team including radiology, nursing, medicine, and surgery team members created an educational campaign targeting residents and critical care physicians to emphasize daily CXR rarely change management and has significant disadvantages in patient care.

• The standard practice of daily CXR orders on ICU admission were discontinued. The need for CXR was determined only after examining the patient or with clinical interventions.

• The team launched a Choose Wisely campaign and changed the workflow so that CXR were only ordered after clinical determinations of necessity.

• A timed process map was created to illustrate the steps in performing a CXR.

• Time-driven activity-based costing (TDABC) was used to determine the unit of cost of performing a single portable chest radiographic examination at the institution was $15.87.
Results

• The team aimed for a 5% reduction of ICU portable CXR utilization between June and December 2019; there was a 37% decrease in the average monthly number of portable chest radiographic examinations performed (733 to 463).

• After the implementation, there were no increases in ventilator days or unplanned extubations.
Results (cont.)

- In the MICU, CXR utilization decreased 43% with a monthly average of 370 to 177.
- In the SICU, CXR utilization decreased 30% with a monthly average of 361 to 253.

The 37% decrease translates into a total average monthly savings of $4285 monthly.

Fig 4. Unit-specific outcome measure chart. The number of chest radiographic examinations performed in the medical intensive care unit (MICU) and surgical intensive care unit (SICU) both decreased after the intervention in June.
Discussion

• A restrictive approach to ordering portable CXR in the adult ICUs decreased the utilization of portable CXR in the adult ICUs by 37% without any increase in complications or unplanned extubating.

• Decreased: radiation exposure, patient sleep disturbances, risk for tube dislodgement with positioning patients for CXR, risk of accidental device removal, and imaging studies with no influence on patient care.

• Outcomes directly related to radiology department assembling multi-disciplinary team and establishing “buy-in” from other health care providers.

• The 11 critical care faculty members participated 100%, which helped implementation. However, the EHR did not allow a change to stop the daily CXR order set from being ordered.
Discussion

• They used the TDABC to build upon previous studies which created an efficient way to express an accurate accounting of costs within the specific institution.

• Due to the success of the project, the other 10 acute care hospitals within the enterprise have updated their practice to resemble a restrictive portable CXR ordering model.

• With the model, the intuition could save $4,000 monthly, $48,000 annually, or $5 million over the next ten years.
But wait . . . limitations

• Availability of data: The data was reported every 4 to 6 weeks which decreased engagement and sustainability.

• Education vs. Workflow: The data was not collected in manner that permits differentiation of impact of education and workflow of the EHR.

• COVID-19: The increase number of patients requiring critical care led to an increase in ICU locations, new/additional staffing, and workload demand.
Module Outline

I. Case
II. Background
III. Article Overview
IV. Clinical Questions
V. Key Points
Clinical questions now . . .

I. Do all ICU patients require daily chest radiographs?

II. When is an appropriate time in training to use a restrictive approach?

III. What should determine if a patient needs a chest radiograph? And should it be standardized?

IV. Should we remove daily order sets from the EHR?

V. How can we optimize efficient, purposeful CXR orders in the ICU?
ACR Appropriateness Criteria for ICU Patients

Variant 1: Admission or transfer to intensive care unit. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography chest portable</td>
<td>Usually Appropriate</td>
<td>☀</td>
</tr>
<tr>
<td>US chest</td>
<td>May Be Appropriate (Disagreement)</td>
<td>O</td>
</tr>
</tbody>
</table>

Variant 2: Stable intensive care unit patient. No change in clinical status. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography chest portable</td>
<td>May Be Appropriate (Disagreement)</td>
<td>☀</td>
</tr>
<tr>
<td>US chest</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
</tbody>
</table>

Variant 3: Intensive care unit patient with clinically worsening condition. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography chest portable</td>
<td>Usually Appropriate</td>
<td>☀</td>
</tr>
<tr>
<td>US chest</td>
<td>May Be Appropriate (Disagreement)</td>
<td>O</td>
</tr>
</tbody>
</table>

Variant 4: Intensive care unit patient following support device placement. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography chest portable</td>
<td>Usually Appropriate</td>
<td>☀</td>
</tr>
<tr>
<td>US chest</td>
<td>May Be Appropriate (Disagreement)</td>
<td>O</td>
</tr>
</tbody>
</table>

Variant 5: Intensive care unit patient. Post chest tube or mediastinal tube removal. Initial imaging.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Appropriateness Category</th>
<th>Relative Radiation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiography chest portable</td>
<td>May Be Appropriate (Disagreement)</td>
<td>☀</td>
</tr>
<tr>
<td>US chest</td>
<td>Usually Not Appropriate</td>
<td>O</td>
</tr>
</tbody>
</table>
Key points

I. Multi-disciplinary “buy-in” team-based approach is invaluable to quality improvement project implementations.

II. Institutions can safely discontinue the protocol of daily ICU CXR with proper education and evidence-based guidelines.

III. With a single CXR cost of $15.87, an institution can save $4,000 monthly, $48,000 annually, or $5 million over the next 10 years.
References

