RADY401 Case Presentation: Adrenocortical Carcinoma

Matt Gellatly, July 20, 2020

Patient History & Initial Work-up

- Previously healthy 18 yo F presents with abdominal pain, chest pain, early satiety, unintentional weight loss (35 lbs)
- On physical exam, palpable abdominal mass, abnormal RUQ cystic mass on POCUS, then CT abdomen/pelvis further characterizes mass as likely from R adrenal origin
- Labs
 - Normal: cortisol, ACTH, LH, FSH, estradiol, testosterone, estrogen, prolactin, B-HCG, AFP, serum metanephrines
 - Elevated: DHEA-S, androstenedione
 - Pending (as of 7/19): VMA, DHEA, pregnenolone, 11-deoxycortisol, 17hydroxypregnenolone
- DDx: Adrenocortical carcinoma, pheochromocytoma, adrenal hematoma, adrenal metastasis, adrenal adenoma, adrenal lymphoma

Imaging Studies from Workup

- POCUS (7/12)
- Chest X-ray (7/12)
- CT abdomen/pelvis with IV contrast (7/12)
- CT chest with IV contrast (7/12)
- 18-FDG PET/CT whole body (7/13)

Chest X-ray

- Rounded mass in Left lung
- Multiple small lesions bilaterally

CT abdomen/pelvis with IV contrast

- Right adrenal gland
 - Heterogeneous enhancing
 - Irregular
 - Central necrotic portion (red arrow)
 - Scattered internal calcifications
 - Encasement of suprarenal and hepatic IVC
- Mass effect
 - Right kidney
 - Pancreas
 - Duodenum
 - Liver
 - Gallbladder
 - Colon
 - Small bowel
- Right hepatic lobe (blue arrow)
 - Irregular heterogeneously enhancing mass, communicating with adrenal mass
 - Effaced hepatic capsule

CT chest with IV contrast

- Innumerable pulmonary nodules bilaterally
- Anterior mass to left of hilum (2.7cm)
- Anterolateral L upper lobe subpleural nodule (1.7 cm)
- Posterolateral L lower lobe subpleural nodule (1.6)

18-FDG PET/CT

- FDG avidity
 - Pulmonary nodules and masses
 - Right hepatic mass
 - Adrenal mass with central necrosis
- Physiologic uptake: salivary glands, tongue base, vocal folds

Patient treatment or outcome

- Port placed by IR for chemotherapy delivery (7/14)
- Core-needle biopsies of adrenal mass obtained under ultrasound guidance (7/16)
 - FNA cannot distinguish adrenal carcinoma from benign adrenal lesion, but can differentiate adrenal tissue versus metastatic tumor
 - Critical to rule out pheochromocytoma before adrenal mass biopsy
- Enrolled in ARAR0332 Phase III clinical trial
 - Treatment of ACC with Surgery + LN dissection + Multiagent chemotherapy (cisplatin, etoposide, doxorubicin, dexrazoxane, mitotane, pegfilgrastim)
- Consult genetics to assess for neoplastic syndrome (MEN-1, Li-Fraumeni, Lynch, Beckwith-Wiedemann, Carney complex)

Typical ACC Imaging Work-up

- CT or MRI is best initial imaging procedure for this abdominal mass
- MRI advantageous in some situations for characterizing local invasion of ACC, specifically vascular invasion
- Plain abdominal radiographs not very helpful, but can show evidence of mass effect
 - Calcifications present in about 30% of ACC, but hard to see on plain films
- FDG-PET/CT useful for identifying ACC versus benign adenomas, which can sometimes present with elevated Hounsfield units (HU) or delayed washout values
- C-MTO PET can distinguish adrenocortical tumor versus noncortical lesion, but not malignant versus benign
 - Metomidate (MTO) inhibits 11-beta hydroxylase and aldosterone synthesis, with high affinity for cortical enzymes

Classic ACC Imaging Findings

- Max diameter >4 cm highly suggestive of malignancy (commonly 4-10cm)
- Additional features on CT/MRI:
 - Heterogeneity
 - Irregular borders
 - Calcifications
 - Invasion of surrounding structures
 - LN enlargement
- Cortical adenomas are typically more 'lipid-rich' than ACC
 - CT attenuation of benign adenoma usually <10 HU, suggesting nearly 100% that tumor is benign adenoma

Additional ACC Cases

Main takeaways:

- 1. Large size (>4 cm diameter)
- 2. Heterogeneous

Imaging Modality Ability to Detect Malignancy

	Sensitivity	Specificity	PPV	NPV
Non-contrast CT	100	33	72	100
18 FDG- PET/CT	87	84	85	86

Radiation/Cost of ACC Work-up

Imaging Modality	Radiation	Comparable to natural background radiation of	Cost
POCUS	None	n/a	\$233 (104-641)
CT abdomen/pelvis	10 mSV	3 years	\$1,515 (512-5,055)
CT chest	7 mSV	2 years	\$780 (440-2,464)
Chest XR	0.1 mSV	10 days	\$72 (29-472)
FDG PET-CT	7 mSV	2 years	\$2,605 (2,084-6,513)
TOTALS	24.1 mSV	7 years, 10 days	\$5,205 (3,169- 15,145)

Not included: CXR #2 (worsening SOB), pre-chemotherapy echocardiogram, port placement under fluoroscopy, CT abdomen/pelvis #2 (bladder dysfunction)

Price estimates per Healthcare Bluebook (https://www.healthcarebluebook.com/ui/consumerfront)

UNC Top Three

- Adrenocortical carcinoma is rare (1-2 per 1,000,000 patients/year)
- CT or MRI usually distinguishes ACC from benign adrenal adenomas, but FDG-PET/CT is best when suspicion of malignancy is high
- Main features on images/clinical presentation: large size (>4cm diameter), heterogeneous, irregular borders, and clinically can present as functional (Cushing's syndrome) or non-functional (mass effect)

References

- 1. Lacroix, A, Nieman, LK (Ed), Martin, AK (Ed) (2020). Clinical presentation and evaluation of adrenocortical tumors. *UpToDate*. Last updated March 19, 2019.
- 2. Albano, D., Agnello, F., Midiri, F., Pecoraro, G., Bruno, A., Alongi, P., Toia, P., Di Buono, G., Agrusa, A., Sconfienza, L. M., Pardo, S., La Grutta, L., Midiri, M., & Galia, M. (2019). Imaging features of adrenal masses. *Insights into imaging*, 10(1), 1. https://doi.org/10.1186/s13244-019-0688-8.
- 3. Angeli, A., Osella, G., Alì, A., & Terzolo, M. (1997). Adrenal incidentaloma: an overview of clinical and epidemiological data from the National Italian Study Group. *Hormone research*, 47(4-6), 279–28.
- 4. Bharwani, N., Rockall, A. G., Sahdev, A., Gueorguiev, M., Drake, W., Grossman, A. B., & Reznek, R. H. (2011). Adrenocortical carcinoma: the range of appearances on CT and MRI. *American journal of roentgenology*, 196(6), W706-W714.
- 5. Herr, K., Muglia, V. F., Koff, W. J., & Westphalen, A. C. (2014). Imaging of the adrenal gland lesions. *Radiologia brasileira*, 47(4), 228–239. https://doi.org/10.1590/0100-3984.2013.1762.
- 6. Hussain, F. (2020, May 11). Adrenocortical (Adrenal Cortical) Carcinoma Imaging. *Medscape*. Retrieved 7/14/2011 from https://emedicine.medscape.com/article/376343-overview.
- 7. Khan, T. S., Sundin, A., Juhlin, C., Långström, B., Bergström, M., & Eriksson, B. (2003). 11C-metomidate PET imaging of adrenocortical cancer. *European journal of nuclear medicine and molecular imaging*, *30*(3), 403–410. https://doi-org.libproxy.lib.unc.edu/10.1007/s00259-002-1025-9
- 8. Lockhart, M. E., Smith, J. K., & Kenney, P. J. (2002). Imaging of adrenal masses. *European journal of radiology*, 41(2), 95–112. https://doi.org/10.1016/s0720-048x(01)00444-2.
- 9. Takeuchi, S., Balachandran, A., Habra, M. A., Phan, A. T., Bassett, R. L., Jr, Macapinlac, H. A., & Chuang, H. H. (2014). Impact of ¹⁸F-FDG PET/CT on the management of adrenocortical carcinoma: analysis of 106 patients. *European journal of nuclear medicine and molecular imaging*, *41*(11), 2066–2073. https://doi.org/10.1007/s00259-014-2834-3.

