

UNC Radiology Residency Educational Scholarship

ersity of North Carolina School of Medicir Department of Radiology 2020 Joshua Wallace MD MPH

Jeremy Kim MD

Sheryl Jordan MD

SCHOOL OF MEDICINE

Learning objectives

By the end of this activity, participants will be able to:

- 1. Describe the differential diagnoses for abdominal pain.
- 2. Understand the various imaging modalities.
- 3. Describe a suggested approach to reviewing abdominal radiographs.
- 4. Understand the imaging basics of appendicitis, diverticulitis, cholecystitis, renal stone disease, small bowel obstruction.

Outline

- 1. Background
- 2. Modalities
- 3. Cases!
- 4. Wrap up/Questions

Background

Acute abdominal pain: 5% of ER visits

• 10% of these patients have serious/lifethreatening condition

H&P: first and most important step

Labs and imaging are supplementary

Common Causes Abd Pain

- Appendicitis
- Diverticulitis
- Cholecystitis
- Bowel obstruction
- Renal stones
- Perforation
- Intussusception
- Ischemia
- AAA rupture

This is not an all-inclusive list, but a very good start on the diseases we see in radiology!

Modalities: Radiography

- Acute abdominal series (AAS) 3 views
 - AP supine abdomen
 - AP upright abdomen
 - PA upright chest
- Common indications:
 - Bowel perforation/free air
 - Obstruction
- Effective radiation dose: 0.1-1 mSv

Radiation Dose

Two types of effects:

- 1. Deterministic: at a certain dose burns, hair loss, skin necrosis WILL occur
- 2. Stochastic: increased risk with increased dose very rough estimate: 10mSv in an adult ~1/1000 risk of cancer

Radiation Dose to Adults From Common Imaging Examinations

		Procedure	Approximate effective radiation dose	Comparable to natural background radiation for
	ABDOMINAL REGION	Computed Tomography (CT) — Abdomen and Pelvis	10 mSv	3 years
		Computed Tomography (CT) — Abdomen and Pelvis, repeated with and without contrast material	20 mSv	7 years
		Computed Tomography (CT) — Colonography	6 mSv	2 years
		Intravenous Pyelogram (IVP)	3 mSv	1 year
		Barium Enema (Lower GI X-ray)	8 mSv	3 years
		Upper GI Study With Barium	6 mSv	2 years
₩	BONE	Spine X-ray	1.5 mSv	6 months
		Extremity (hand, foot, etc.) X-ray	0.001 mSv	3 hours
8	CENTRAL NERVOUS SYSTEM	Computed Tomography (CT) — Head	2 mSv	8 months
		Computed Tomography (CT) — Head, repeated with and without contrast material	4 mSv	16 months
		Computed Tomography (CT) — Spine	6 mSv	2 years
	CHEST	Computed Tomography (CT) — Chest	7 mSv	2 years
		Computed Tomography (CT) — Lung Cancer Screening	1.5 mSv	6 months
		Chest X-ray	0.1 mSv	10 days

Modalities: AAS

AP supine abdomen

AP upright abdomen

PA chest

Contrast

Various tissues attenuate the x-ray beam differently.

Hypodense or hypoattenuating

- Air
- Fat
- Soft tissue
- Bone
- Metal

Hyperdense or hyperattenuating

Modalities: CT

CT sensitivity and specificity is best if intravenous contrast is given.

Exceptions: renal stone disease, renal failure patients

Rotating X-ray tube around patient Allows for 2D images (more on this in future lectures)

Higher radiation than AAS: 5-10 mSv

CT Abdomen and pelvis at UNC: recons in axial, coronal, and sagittal planes with soft tissue algorithm. Standard 5 mm axial slices

Modalities: Ultrasound

Uses sound waves (rather than ionizing radiation)

Indications:

RUQ pain: gallstones/cholecystitis/bile duct

stones

appendicitis in kids/pregnancy

Kidney stones

Pelvis US for torsion/adnexal pain

Modalities: Ultrasound

Modalities: MR

Less frequently used modality in acute setting Scan time >>> CT or US

Pros: Better soft tissue resolution

Cons: magnet safety, long scan time, \$\$\$

Indications:

Pregnant appy
Suspect CBD obstruction after US = MRCP
Problem solving

Outline

- 1. Background
- 2. Modalities
- 3. Cases
- 4. Wrap up/Questions

Case 1: RLQ Pain

Case 1: RLQ Pain

Case 1: RLQ Pain

Appendicitis

CT in adults, US in kids

Imaging findings:

dilated appendix

>6mm

Fat stranding

Fluid

Appendicolith

+/- abscess

Case 2: Crampy LLQ Pain

Case 2: Crampy LLQ Pain

Diverticulitis

CT test of choice

90% sigmoid

Imaging findings:
Diverticulosis

Fat stranding

Bowel wall

thickening

+/- free air,

abscess

Cholecystitis

US initial modality; MRI or CT also used

Imaging findings:

Wall thickening

Gallstones

Pericholecystic fluid

Murphy's sign on US

+/- perforation

abscess

On US: Shadowing stone in the gallbladder, wall thickening, trace pericholecystic fluid

On CT: Wall thickening, gallbladder mucosal enhancement, and pericholecystic fat stranding

Cholecystitis

US initial modality; MRI or CT also used

Imaging findings:

Wall thickening
Gallstones
Pericholecystic fluid
Murphy's sign on US
+/- perforation
abscess

Case 4: Left flank pain

Case 4: Left flank pain

Case 4: Left flank pain

Nephrolithiasis

CT is often initial study of choice

US in kids, and radiographs for follow up

Imaging findings:

Stone +/-hydronephrosis

dilated ureter, inflammation

Case 5: Vomiting and abdominal distension

Small bowel: plicae circulares

Large bowel: haustra

Case 5: Vomiting and abdominal distension

Small bowel obstruction SBO

Imaging findings:

Dilated loops of bowel, >3

cm

Air fluid levels

Decompressed distal

bowel and colon

CT: transition point -

hernia, adhesions, mass

Case 6: Currant jelly stool

Case 6: Currant jelly stool

Intussusception

3 months to 3 years old; US test of choice in kids

Imaging findings:

Obstruction +/- right upper quadrant mass on radiograph

US: target sign

Case 6: Currant jelly stool

Air enema

lleocolic intussusception is treated by radiologists.

Catheter inserted into rectum and taped for seal to prevent air leak.

Pump air into the colon maintaining pressure <120 mmHg until reduced.

Successful reduction – will see air reflux into the distal small bowel.

Case 7: Pain

Case 8: Obtundation with hypotension

Axial CTs: Diffusely dilated loops of bowel. Air in the bowel wall = pneumatosis. Air in the SMV at the portal confluence

Case 8: Obtundation with hypotension

Ischemic bowel with pneumatosis

Imaging findings:

Bowel wall thickening

Pneumatosis is often late finding

Gas in dependent bowel wall

Can see gas in SMV/portal veins

Axial CTs: Diffusely dilated loops of bowel. Air in the bowel wall = pneumatosis.

Think Back!

- Common causes of abdominal pain we image
- Remember: US in children, radiographs/CT in adults
- But US in gallstones and cholecystitis!
- CT WITH contrast unless contraindication or suspect renal stone
- Intussusception Rx air enema
- Any others? Any questions?

More at <u>www.rads.web.unc.edu</u> <u>www.msrads.web.unc.edu</u> and @UNCRadRes

Thank you!

References

Birchard KR, Busireddy KR, Semelka RC. Critical Observations in Radiology for Medical Students. John Wiley & Sons; 2015.

Barclay L. Evaluation of Acute Abdominal Pain Reviewed. Medscape. https://www.medscape.org/viewarticle/573206. Published April 18, 2008. Accessed March 30, 2019.

